NAG C Library Function Document nag dtr copy (f16qec)

1 Purpose

nag dtr copy (f16qec) copies a real triangular matrix.

2 Specification

3 Description

nag_dtr_copy (f16qec) performs the triangular matrix copy operations

$$B \leftarrow A$$
 or $B \leftarrow A^T$

where A and B are n by n real triangular matrices.

4 References

The BLAS Technical Forum Standard (2001) www.netlib.org/blas/blast-forum

5 Parameters

1: **order** – Nag_OrderType

Іпри

On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = **Nag_RowMajor**. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: **uplo** – Nag_UploType

Input

On entry: specifies whether the upper or lower triangular part of A is stored as follows:

if $uplo = Nag_Upper$, the upper triangular part of A is stored;

if $uplo = Nag_Lower$, the lower triangular part of A is stored.

Constraint: $uplo = Nag_Upper$ or Nag_Lower .

3: **trans** – Nag_TransType

Input

On entry: specifies the operation to be performed as follows:

if trans = Nag_NoTrans, $B \leftarrow A$;

if trans = Nag_Trans or Nag_ConjTrans, $B \leftarrow A^T$.

Constraint: trans = Nag_NoTrans, Nag_Trans or Nag_ConjTrans.

4: **diag** – Nag_DiagType

Input

On entry: specifies whether A has non-unit or unit diagonal elements, as follows:

[NP3645/7] f16qec.1

if diag = Nag_NonUnitDiag, the diagonal elements are stored explicitly;

if diag = Nag_UnitDiag, the diagonal elements are assumed to be 1, and are not referenced.

Constraint: diag = Nag_NonUnitDiag or Nag_UnitDiag.

5: **n** – Integer

On entry: n, the order of the matrices A and B.

Constraint: $\mathbf{n} > 0$.

6: $\mathbf{a}[dim]$ – const double

Input

Note: the dimension, dim, of the array **a** must be at least max(1, **pda** \times **n**).

If order = Nag_ColMajor, the (i, j)th element of the matrix A is stored in $\mathbf{a}[(j-1) \times \mathbf{pda} + i - 1]$ and if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in $\mathbf{a}[(i-1) \times \mathbf{pda} + j - 1]$.

On entry: the n by n triangular matrix A. If $\mathbf{uplo} = \mathbf{Nag_Upper}$, A is upper triangular and the elements of the array below the diagonal are not referenced; if $\mathbf{uplo} = \mathbf{Nag_Lower}$, A is lower triangular and the elements of the array above the diagonal are not referenced.

7: **pda** – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array **a**.

Constraint: $pda \ge max(1, n)$.

8: $\mathbf{b}[dim]$ – double

Note: the dimension, dim, of the array **b** must be at least max $(1, \mathbf{pdb} \times \mathbf{n})$.

If **order** = **Nag_ColMajor**, the (i, j)th element of the matrix B is stored in $\mathbf{b}[(j-1) \times \mathbf{pdb} + i - 1]$ and if **order** = **Nag_RowMajor**, the (i, j)th element of the matrix B is stored in $\mathbf{b}[(i-1) \times \mathbf{pdb} + i - 1]$.

On exit: the n by n triangular matrix B. If $uplo = Nag_Upper$ and $trans = Nag_NoTrans$ or if $uplo = Nag_Lower$ and $trans = Nag_Trans$ or $Nag_ConjTrans$, then B is upper triangular and the elements of the array below the diagonal are not set; if $uplo = Nag_Lower$ and $trans = Nag_NoTrans$ or if $uplo = Nag_Upper$ and $trans = Nag_Trans$ or $Nag_ConjTrans$, B is lower triangular and the elements of the array above the diagonal are not set.

9: **pdb** – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array **b**.

Constraint: $\mathbf{pdb} \ge \max(1, \mathbf{n})$.

10: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE INT

```
On entry, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{n} \geq 0.
On entry, \mathbf{pda} = \langle value \rangle.
Constraint: \mathbf{pda} \geq \max(1, \mathbf{n}).
On entry, \mathbf{pdb} = \langle value \rangle.
Constraint: \mathbf{pdb} \geq \max(1, \mathbf{n}).
```

f16qec.2 [NP3645/7]

NE_BAD_PARAM

On entry, parameter $\langle value \rangle$ had an illegal value.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see section 2.7 of The BLAS Technical Forum Standard (2001)).

8 Further Comments

None.

9 Example

None.

[NP3645/7] f16qec.3 (last)